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Abstract. In the quantum field theory the existence and the structure
of the causality cone (light cone) is of decisive importance. It has been
noted severally that the divergences in the quantum theory of interacting
fields can be eliminated through the assumption that the light cone in
a region of extremely strong fields either is distorted or does not exist
at all [cannot be defined] (nonlocal field theories, field theories with an
elementary length). - In Einstein’s geometric theory of gravitation the
structure of the causality cone is defined by the gravitational field gµν .
Nevertheless, according to the usual interpretation of the general theory
of relativity, in an infinitesimal region of space the light cone is identical
with the Minkowskian null cone. It is in fact required that everywhere
(also in the region of a strong gravitational field) the metric possess
the Lorentz-Minkowski signature s = −2, so that on an infinitesimal
scale one can always have gµν = ηµν . A nonMinkowskian signature (in
particular a definite one) in the interior region of strong fields, due to
the Minkowskian signature of the exterior, would require the vanishing
of the determinant of gµν on a timelike hypersurface. - It will be shown
here that such null points of finite order can be entirely compatible with
the vacuum equations Rµν = 0 in the sense of a limit. - Then static
gravitation fields are considered, and for them from Rµν = 0 it is derived
that for det gik 6= 0 the null points of det gµν must be of the second order.
An example for this is the bridge model of the Schwarzschild metric by
Einstein and Rosen.

1. The causality cone and the signature of the gravitational
field gµν

In the general theory of relativity it is usually required in general that
the special theory of relativity be valid in infinitesimal regions of the four-
dimensional space V4. From here it follows that, in a normal-geodesic
coordinate system around the considered point P , one can always obtain
(gµν)P = ηµν . Here ηµν is the Minkowskian fundamental tensor

ηµν =


−1

−1
−1

+1

 .

Translation by S. Antoci of the paper: Gravitationsfelder mit Nullstellen der Determi-
nante der gµν , Annalen der Physik 9, 283-294 (1962). (Received by the Editor on February
8th, 1962.)
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According to Sylvester’s theorem of inertia1, then the Riemannian V4 of the
general theory of relativity has everywhere the same index of inertia

(−1,−1,−1,+1)

as the universe of Minkowski, and the signature s = −3 + 1 = −2.
This Lorentz-Minkowski signature of V4 means physically that at each

point P of V4 a causality cone (light or null cone) exists, that in the infini-
tesimal neighbourhood of the point P coincides with the Minkowskian cone
at P . In a sufficiently small region of the Riemannian spacetime universe V4

all the causality relations are therefore valid in the form in which they are
valid in the special theory of relativity. - In a finite region, on the contrary,
due to the existence of a gravitational field the lightcone of P behaves oth-
erwise than in the flat Minkowski universe, and the global properties of the
causality cone in the region of a strong gravitational field can be totally dif-
ferent from the ones of the Minkowskian null cone2. Hence on a large scale,
due to the existence of the gravitational field, the causal connection can
have a form totally different from the one assumed in the special-relativistic
quantum field theories. This occurs when one deals with the regions in which
the wave fields become extremely strong, and as a consequence, according
to Einstein’s field equations

(1) Rµν −
1
2
gµνR = −κTµν

the gravitational field too eventually becomes extremely strong.
If the coordinate system is so chosen that from the vanishing of the Rie-

mann tensor Rσµνλ it follows also gµν = ηµν , in regions in which gµν−ηµν is of
the order of magnitude 1, one must expect in general a quite unusual global
behaviour of the causality cone3. This has on occasion far reaching conse-
quences for the properties of the generalised Green’s functions, hence for the
causality relations. Furthermore, a null cone that globally differs much from
the Minkowskian one can lead to a temporal asymmetry of spacetime and
to analogous topological consequences. Also the character of the isometry
groups could change. All this leads to new questions when dealing with the
elementary particle problem in the framework of the particle program of
Einstein, or of the geometrodynamics of Wheeler (see below footnote 7).

It seems however that the existence of light cones at any point P , chosen
at will, i.e. the infinitesimal validity of the Minkowski metric also in a region
of very strong fields, is indissolubly and intrinsically linked to the appearance
of the divergences in the quantum field theory. All the singularities of the
quantum field theories happen just on light cones.

Ad hoc theories have been proposed for the elimination of the difficulties
associated with the existence of the light cone also in a region of extremely

1see e.g. L. P. Eisenhart, Riemannian Geometry, Princeton 1949, p. 23.
2see on this point D. Finkelstein, Physic. Rev. 110, 965 (1958); A. Papapetrou and

H. Treder, Ann. Physik (7) 6, 311 (1960).
3see previous footnote.
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strong fields. Either it is assumed an incomplete localisability of the fields
due to the existence of an elementary length l, or the Green functions are
altered through the introduction of structure functions.

Yukawa once proposed to assume that inside the nucleus of the elemen-
tary particle (hard core) the retarded function of special relativity does not
intervene, but that all the interactions occur instantaneously. This means
just that according to Yukawa in the “core of the elementary particle” no
light cone exists, hence the metric is definite.

Now, Einstein’s geometric theory of gravitation is evidently competent for
assertions about the metric. In fact Einstein’s equations (1) are a system of
partial differential equations for the metric tensor gµν . It has been already
observed severally that a consistent fusion of quantum theory and gravita-
tion theory per se leads to an elementary length. In fact from Newton’s
gravitational constant f (connected with Einstein’s constant κ according to
κ = 8πf/c4), from c, the velocity of light in an inertial system, and from
Planck’s constant h, Planck’s elementary length

(2) lPlanck =

√
hf

c3
≈ 1033cm

can be formed. This elementary length actually appears as a limit to the
measurability of lengths in a quantum theory of the gravitational field4.

The usual standpoint of the general theory of relativity is however the
one outlined above. In fact in the world regions, in which the gravitational
fields are weak, hence everywhere except for very small regions in proximity
to the quantum theoretical singularities in the interior of the particles, the
gµν (in a quasi-Cartesian system of coordinates) differ only slightly from
ηµν . In these regions it holds

(3) det gµν ≡ |gµν | ≡ g < 0.

The condition (3) for the determinant allows for the metric of V4 only the
signatures

(4) s = +2

or

(5) s = −2.

(4) corresponds to the existence of 3 independent timelike and one spacelike
directions at any point P , hence to the index of inertia

(6) (+1,+1,+1,−1).

(5) corresponds to the existence of 3 independent spacelike and one timelike
directions in P , hence to the Minkowskian index of inertia5

(7) (−1,−1,−1,+1).

4see J.A. Wheeler, Annals of Physics 2, 604 (1957); H. Treder, Monatsberichte der
Deutschen Akademie der Wissenschaften zu Berlin 3, 241 (1961).

5It is assumed the usual sign convention of the general theory of relativity.
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But since in the exterior region with weak gravitational field it holds just
(7), for reasons of continuity the signature (5) shall hold everywhere, if (3)
is everywhere required.

Now, a change of sign of the determinant g brings for reasons of continuity
to the existence of a hypersurface S (that on occasion can also degenerate
to a surface, line or point), at which it holds

(8) gS = 0.

A null point of g on S derives from the fact that either
a) a direction, spacelike for g < 0, or
b) a direction, timelike for g < 0,

degenerates to a null direction.
When g has on S a null point of odd order, if on the left side of S it is

g < 0, on the right side it shall be g > 0. According to whether
a) an originally spacelike direction becomes timelike for g > 0, or
b) an originally timelike direction becomes spacelike,
on the right side of S the indices of inertia are different6.
In case a) one has

(9) (−1,−1,+1,+1) with s = 0,

and in case b)

(10) (−1,−1,−1,−1) with s = −4.

In the first case, on a second hypersurface S∗ (with gs∗ = 0), another space-
like direction might become timelike, so that on the right side of S∗ the
index of inertia reads

(11) (−1,+1,+1,+1) with s = +2.

On the right side of S∗ the metric is therefore on an infinitesimal scale again
of Minkowskian type, however with the mirror index of inertia (11).

After what has been said, the case (10) appears physically important.
We can in fact assume the hypersurface S to be timelike (see below §3) and
closed in two dimensions. Then the region surrounded by S (world tube)
has at all times the signature (10), while outside S the signature persists
in being Minkowskian. One could try to interpret the internal region as
“history of the core of an elementary particle”. However, since there the
metric is negative definite, in that region all the field equations, inclusive of
the Einstein equations, are elliptic, so that there, according to the requisite of
Yukawa, one has an instantaneous and not retarded interaction. The (four-
dimensional) internal region with the negative definite metric will have as
border the hypersurface S, at which the boundary condition g = 0 must be
satisfied. Due to the elliptic character of Einstein’s equations in the inner
region this boundary value problem leads by itself to an eigenvalue problem,

6see e.g. A.Z. Petrow, Einstein-Räume, Moskau 1961.
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hence to a discrete multeplicity of solutions of Einstein’s equations (1), to
which one will perhaps additionally impose cylindrical symmetry.

However already the existence of hypersurfaces S, at which (8) holds, but
g has a root of even multiplicity, would be of physical interest, because then
at least at the points of S the light cone might not exist. This will be the
case when (see §3) the timelike direction degenerates to a null direction (case
b). The metric at S will be semidefinite with the index of inertia

(12) (−1,−1,−1, 0) and s = −3.

If instead (case a) a spacelike direction degenerates to an isotropic one, at
S we have

(13) (0,−1,−1,+1) and s = −1,

hence an indefinite metric at S with lightcones, that at S degenerate to
two-dimensional ones7.

2. The field equations g2Rµν = 0

In the general theory of relativity the null points of g will be in general
considered as field singularities. They can not be eliminated by any regular
transformation of coordinates. In particular field singulatities shall always
appear, when the null points can not be consistently interpreted as a result
of irregular transformations.

This idea stems from the fact that from (8) it follows that some compo-
nents of the contravariant tensor gµν become infinite at S, since it is

(14) det gµν =
1
g
.

However on this point Einstein8 remarked that no direct geometric meaning
is in general associated to the contravariant gµν . In the Riemannian geom-
etry the infinitesimal length is defined through the covariant gµν , namely
through the line element

ds =
√

gµνdxµdxν .

The gµν enter instead both the Riemann tensor Rσ
µνλ and the Einstein-

Ricci tensor Rµν , so that at surfaces S, at which (8) holds, Rµν becomes an
evidently nonsensical expression, since Rµν is bilinear in the gµν , hence in

7A problem connected with the previous questions is whether, due to the existence of
a Killing vector (or of an analogous but weaker symmetry of the gravitational field), the
quotient space V ∗

3 can change its signature, without an overall change of the Minkowski
signature of V4. In a work of A. Papapetrou and the present author it has been investigated
in particular whether regular gravitational fields do exist with an asymptotic timelike
Killing vector, that in the region of strong fields becomes isotropic and then spacelike.

8A. Einstein and N. Rosen, Physic. Rev. 48, 73 (1935); 49, 404 (1936); A. Einstein,
Jour. Franklin Inst. 221, 313 (1936).
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1/g. Therefore Einstein writes the field equation for the vacuum not in the
form

(15) Rµν = 0;

he writes instead

(16) g2Rµν = 0.

The tensor density of fourth degree g2Rµν is evidently everywhere regular
when the gµν , together with all the first and second derivatives that enter
Rµν , are regular. To this end it is sufficient that the gµν and their first
derivatives be continuously differentiable.

Therefore, at the left-hand side of (16) there is a well defined expression
also at points where (8) holds. Hence (16) could also possess solutions for
which the sign of g changes at a hypersurface S, and as a consequence the
signature s of the Einsteinean V4 is different on both sides of S, or more
generally, solutions for which g vanishes on S.

However, if the modified vacuum field equations (16) are satisfied on S
and in a layer S′ < S < S′′ of finite width, in this layer the original Einstein’s
vacuum field equations (15) hold too, and in particular, in the sense of a
limit, also on S: solutions of the modified field equations (16) of Einstein,
for which at S the determinant g has a null point of n-th order, are (in the
limit) also solutions of (15).

In fact, from the validity of (16) in a finite layer S′ < S < S′′, it follows
that on S, besides the density g2Rµν , all the derivatives of g2Rµν vanish too.
If we then give to the hypersurface S the equation

(17) x1 = 0,

it follows:(
g2Rµν

)
x1=0

=
(

∂

∂x1

(
g2Rµν

))
x1=0

= · · · =
(

∂n

(∂x1)n

(
g2Rµν

))
x1=0

=
(

∂n+1

(∂x1)n+1

(
g2Rµν

))
x1=0

= · · · = 0.(18)

If we then form for x1 → 0, i.e. for g → 0, the limit value

(19) lim
x1→0

(
g2Rµν

g2

)
= (Rµν)x1=0,

according to L’Hôpital’s rule, from (18) follows:

(20) lim
x1→0

(Rµν) = 0.

Then, for null points of g of finite order, together with (16), Einstein’s
vacuum equations (15) are satisfied too. Regular Einstein spaces with g
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vanishing at a hypersurface do exist, when there are solutions of (16)
for which g vanishes at a hypersurface.

In the following we deal with the simplest particular case of a gravitational
field gµν with a determinant g that vanishes at a hypersurface S. For this
problem, dealt with in the following §3, one can calculate directly from (15),
and it is not necessary to execute explicitly the limit (19).

3. Static gravitational fields with a hypersurface g = 0

We will now assume that a one-dimensional isometry group exists, so that
in an adapted coordinate system the “cylindrical condition”

(21) gµν,4 = 0

can be satisfied. The coordinate x4 can be either spacelike or timelike;
however, it cannot be isotropic. Furthermore we prescribe that the field be
“static” with respect to the coordinate x4, i.e. we suppose that

(22) gi4 = 0

holds too9. Then it is

(23) g = |gik|g44

and

(24) gilg
kl = δk

i , gi4 = 0, g44 =
1

g44
.

The hypersurface S must be independent of x4 too, i.e. S must contain
the coordinate lines of x4, so that the isometry exists globally. We can hence
[by means of a transformation x1 = x1(xi)]10 reduce S to the form (17).

g vanishes on S either when

(25) |gik|x1=0 = 0,

or when

(26) (g44)x1=0 = 0.

Now we assume that the subspace V3 defined by x4=const. possesses a
nondegenerate metric ds2 = gikdxidxk. Then it is everywhere

|gik| 6= 0,

and, when (8) holds, (26) must hold too.
Through a transformation

x2 = x2(xi), x3 = x3(xi), x1 ≡ x1,

that does not spoil the already achieved simplifications, we can further ob-
tain

(27) g12 = g13 = 0.

9The Greek indices shall run from 1 to 4, the Latin ones from 1 to 3.
10see A. Papapetrou and H. Treder, Ann. Physik (7) 6, 311 (1960).
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The matrix of gik thus takes the form:

(28) gik =

 g11 0 0
0 g22 g23

0 g23 g33

 ,

and the contragredient one respectively reads

(29) gik =

 g11 0 0
0 g22 g23

0 g23 g33

 .

Furthermore, it is

(30) g11 =
1

g11
6= 0,

since g11 is everywhere limited.
From (30) it follows that the vector normal to S is not isotropic, despite

the fact that the interior metric of S has the degenerate form

dσ2 = g22(dx2)2 + 2g23dx2dx3 + g33(dx3)2.

This is obviously a consequence of the vanishing of the overall determinant
g on S. - From (24) we infer that the only field component that has a pole
on S is g44.

In the neighbourhood of S we write g44, expanded in powers of x1 and,
by taking (26) into account11:

(31) g44 = α
n

(x2, x3)(x1)n + α
n+m

(x2, x3)(x1)n+m + · · ·,

with n and m > 0. It is not necessary that (31) be the beginning of a Taylor
series, and we do not require a priori that n and m be natural numbers. It
is only necessary that the first and second derivatives do exist. From the
fact that g44,1 is limited follows in particular that it must be n ≥ 1. For g,
because of (23) and of |gik| 6= 0, an analogous expression holds:

(32) g = (|gik|)x1=0 α
2

(x2, x3)(x1)n + A
n+m

(x2, x3)(x1)n+m + · · ·.

We will assume that for x1 > 0 (the “external” region) it is g44 > 0 too,
hence x4 in the outer region is a timelike coordinate12. Let us pose for
brevity g44 = V 2 and −|gik| = γ2. - For x1 = 0 here it is g11 < 0, hence
the surface x1 = 0 is timelike. In its points no null cone exists, because for
x1 = 0 there is only one null direction, the x4 direction. This fact results

11The null points at x1 = 0 cannot be removed by any regular transformation.
12As it can be easily seen, the assumption g11 > 0, g44 < 0 (for x1 > 0) does not

produce, with respect to the structure of gµν , results different from the ones that will be
derived here.
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immediately from the observation that, because |gik| 6= 0, for x1 = 0 g is of
rank 3 and the matrix of gik is definite.

The field equations (15) read:

(33) R44 =
V

γ

(
gikγV,i

)
,k

= 0,

(34) Ri4 = 0,

(35) Rkl = Pkl +
1
V

(
V,kl − Γi

klV,i

)
= 0.

Here Pik is the Ricci tensor, formed with gik, of the usual V3 defined by
x4 = 0, and consequently is everywhere limited. Also the Γi

kl contain only
the gik and gmn, and therefore are everywhere limited too.

Due to γ 6= 0, in the neighbourhood of x1 = 0, from (33) and from the
expression (31) for g44 follows13:

V
[
γg11V,11 +

(
γg11

)
,1

V,1

]
=

 α
1
2

n

(
(x1)

n
2 + · · ·

)×
[(

(γg11)x1=0

(n

2

(n

2
− 1
))

(x1)(
n
2
−1) + · · ·

)]
+

 α
1
2

n

(
(x1)

n
2 + · · ·

)×
[(

(γg11),1

)
x1=0

(n

2
(x1)(

n
2
−1) + · · ·

)
+ · · ·

]
= 0.(36)

All the powers of x1 must vanish individually. Since g11γ 6= 0, the term with
the lowest power of x1 is in general the term

(37)
(
V γg11V,11

)
x1=0

.

Therefore (37) always tends to zero more slowly than the next term

(38)
(
V (γg11),1V,1

)
x1=0

,

provided that V tends to zero more quickly than x1. Hence in order that for
x1 → 0 (33) may be satisfied [and also (31) may be valid], V must possess
just a nullpoint of first order. Then it must be n = 2, i.e. one must have

(39) V = α
1
2

2

(x2, x3)(x1)1 + · · ·

13One observes that, for n ≥ 2, R44 at x1 = 0 remains limited and therefore meaningful.
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and hence

(40) g44 = α
2

(x2, x3)(x1)2 + · · ·,

where by necessity the coefficient of (x1)2,

α
2

(x2, x3),

is different from zero. - g44 and hence g have at S, in general, a null point
of second order:

(41) g = |gik|x1=0 α
2

(x2, x3)(x1)2 + · · ·.

We can evaluate also the next term in the expansion (31) for g44. As we will
see immediately (see below), (35) requires in fact that all the gab,1 vanish
for x1 = 0 at least like x1. If furthermore g11,1 vanishes too, like in §4, with
(39) one gets

(42) (γg11),1V,1 = β(x2, x3)x1
α

1
2

4

(x2, x3) + · · ·.

For (33) to be satisfied, one needs that for V,11 it holds:

(43) V,11 = v(x2, x3)x1 + · · ·.

Then (39) specialises to

(44) V = α
1
2

2

(x2, x3)x1 + α
3

(x2, x3)(x1)3 + · · ·,

so that for the two lowest vanishing terms of g44 we find

(45) g44 = α
2

(x2, x3)(x1)2 + α
4

(x2, x3)(x1)4 + · · ·.

- If in particular (31) is a Taylor series, one obtains for the Taylor coefficients

(46) α
0

= α
1

= α
3

= 0, α
2
6= 0.

- The expansion for g is completely analogous.
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The field equations (34) are identities. - In the field equations (35) Pkl is
limited, hence for x1 → 0 also the terms

(47)
1
V

V;kl

must remain limited. Now, according to (39) it is

(48) V,1 → α
1
2

2

, V,ab → 0, V,2V,3 → 0;

(49)
1
V
→ α−

1
2

2

(x1)−1.

Therefore it must be for x1 → 0:

(50) Γi
abV,i → Γ1

abV,1 → Γ1
abα

1
2 → 0(x1),

where Γ1
ab according to (49) must have a null point (at least) of the first

order:

(51) Γ1
ab = α

1
2
ab

1

(x2, x3)x1 + · · ·

( αab
1

= 0 is possible too). Due to (27) equation (50) means:

(52) Γ1
ab =

1
2
g11gab,1 = αab

1
(x2, x3)x1 + · · ·.

Hence [in keeping with (36)], for the gab it must hold

(53) gab = αab
0

(x2, x3) + αab
2

(x2, x3)(x1)2 + · · ·.

(Some αab
2

may vanish).

In the equations (48-53) the indices a and b run from 2 to 3, hence for
x1 → 0 the field equations R22 = R23 = R33 = 0 are immediately satisfied.
Equations

R11 = R12 = R13 = 0

require instead that, up to terms that vanish faster than x1, it holds:

(54) V,11 − V,1Γ1
11 = V,12 − V,1Γ1

12 = V,13 − V,1Γ1
13 = 0.
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If one poses for V

V = α
1

(x2, x3)x1 + α
1+k

(x2, x3)(x1)1+k + · · ·,

one sees immediately that it must be k ≥ 1. From (54), when x1 → 0, it
follows for k = 1:

V,11 = 2 α
2

=
1
2
g11g11,1 α

1
,

V,1a = α,a
1

=
1
2
g11g11,a α

1
(a = 2, 3).(55)

Therefore one has α
2

= 0 and hence α
3

= 0 when g11,1 vanishes for x1 → 0,

as it happens with the Einstein-Rosen metric dealt with in §4. - One further
infers from (55) that, when g11 is constant for x1 → 0, the same thing occurs

for α
1

and hence α
2

too.

4. About the bridge model of a particle according to Einstein
and Rosen

Through the form, derived in §3, of the terms that vanish to the lowest
order for g44 and gkl, it is guaranteed that for x1 → 0 Einstein’s vacuum
field equations are fulfilled, although g vanishes for x1 → 0. Now it has been
determined already in a completely different way a static gravitational field
with det gik 6= 0, that for x1 6= 0 satisfies the vacuum equations without
singularities, and whose determinant g vanishes for x1 = 0. This field is the
Schwarzschild metric in the coordinates of the ‘bridge model of a particle”
of Einstein and Rosen14.

The line element of Einstein and Rosen results from the Schwarzschild
line element in spherical polar coordinates
(56)

ds2 = −

(
1

1− 2m
r

dr2 + r2((dx2)2 + sin2 x2(dx3)2)

)
+
(

1− 2m

r

)
(dx4)2

through the substitution

(57) (x1)2 = r − 2m.

14A. Einstein and N. Rosen l.c. in footnote 8; J.A. Wheeler, Rev. mod. Physics 33,
63 (1961). - The singularity of g11 that appears in (56) for r = 2m will be eliminated
through the Einstein-Rosen transformation (57).
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It reads

ds2 = −4
(
2m + (x1)2

)
(dx1)2(58)

−
(
2m + (x1)2

)2 ((dx2)2 + sin2 x2(dx3)2
)

+
(x1)2

2m + (x1)2
(dx4)2.

The value of the determinant is

(59) g = −4
(
2m + (x1)2

)4 (x1)2 sin2 x2.

It vanishes for x1 = 0 due to the vanishing of g44. For small x1 it holds for
g44 the Taylor series

(60) g44 =
(x1)2

2m

(
1− (x1)2

2m
+ · · ·

)
.

Einstein remarked that by using as foundation the modified field equations
(16) the metric (58) is an everywhere regular solution. But, according to our
discussion in §§2 and 3, (58) must satisfy also the usual vacuum equations
(15), in particular also for x1 → 0. We see on the basis of the conditions
derived in §3 that this is in fact so. The gµν are diagonal and independent of
time. As required in formula (45), g44 according to (60) has a null point of
second order, and for the Taylor coefficients one has - in keeping with (60):

(61) α
2

=
1

2m
and α

0
= α

1
= α

3
= 0.

Furthermore, in keeping with (53) we find for the gkl,1

(62) g11,1 = −8x1, g22,1 = −8mx1 and g33,1 = −8mx1 sin2 x2.

Also for finite x1 6= 0 (58) is a regular solution of (15). Hence the gµν in (58)
are regular for positive m15 and, with a coordinate transformation that is
regular for x1 6= 0 and finite, they are transformed back to the Schwarzschild
metric (56). - The singularity of the gii for x1 → ∞ can be evidently
interpreted as an irregularity of the coordinates. It can be eliminated by
prosecuting, at a surface r = a > 0, the transformation (57), with a sufficient
degree of continuous differentiability, by means of a transformation that for
r →∞ brings to Cartesian coordinates.

At variance with the hypotheses done in the known theorems of Serini,
Lichnerowicz16 and others, the regular metric (58) possesses a nonEuclidean
topology. To any point of Schwarzschild’s space with r > 2m correspond
in fact 2 coordinate values of x1. The V 3 (and also the V 4) is therefore a
sort of two-sheeted Riemann surface with a branch point at x1 = 0, i.e. for

15For negative m, g44 has instead a pole for (x1)2 = 2m. As remarked by Einstein (l.c.
in footnote 8) the prescription “a particle corresponds to a regular V4 in the form of a
“bridge model” with a surface g = 0” produces therefore positive particle masses. Hence
the Schwarzschild field of a negative mass can not be transformed into a regular metric.

16see A. Lichnerowicz, Théories relativistes del la gravitation et de l’electromagnétisme,
Paris 1955.
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g = 0. - According to Einstein and Rosen, physically one must mutually
identify the two sheets x1 > 0 and x1 < 0. The surface g = 0 is then
the “bridge” between the two identical sheets. This “bridge” represents the
particle. The Einstein-Rosen particle has therefore no “particle interior”,
and represents a generalised point particle. This could be a reason why
there is no mass spectrum. In fact (see §1) just the “particle interior”
should bring to eigenvalue problems.

5. Final remarks

Our previous discussion of the simplest pure gravitational field with null-
points of the determinant g shows that the general theory of relativity -
apart from the fact that it provides assertions about the global structure
of the causality cones - allows also to produce metrics in which, at certain
points, no causality cone locally exists.

From this we further see that in the gravitational theory of Einstein it is
not consequent to impose a priori further general mathematical conditions
on the gravitational field besides the field equations (15) and the Galilean
boundary conditions. The usual condition g 6= 0 (and s = −2) excludes just
metrics that constitute without doubt an Einstein space, and that can be
physically of great importance.

More generally, one should a priori allow for all the possible gravitational
fields gµν that fulfill Einstein’s gravitational equations and the boundary
conditions. In particolar the gravitational field under consideration should
not be restricted either through a topological injunction (like the prescrip-
tion of Euclidean topology), or through hypotheses of differentiability (like
the prescription that the gµν be of class C1 or C2 [piecewise higher]). - The
interesting ideas17 of Wheeler about a geometrodynamics stand in fact on
the introduction of nonEuclidean topologies in the general theory of rela-
tivity. And our investigations over gravitational shock waves have shown18

that through the injunction: the gµν are of class C1 (piecewise higher) the
physically interesting shock waves of first order become excluded, although
Einstein’s equations can be satisfied in the sense of a limit also for discon-
tinuous gµν,λ. - Eventually the injunction of continuity for the gµν appears
superfluous19. In fact Einstein’s equations, again applied in the sense of

17see C. Misner and J.A. Wheeler, Ann. of Physics 2, 525 (1957); J. A. Wheeler, Nuovo
Cimento Suppl. 7 (1960) and J.A. Wheeler l.c. in footnote 14.

18A. Papapetrou and H. Treder, Math. Nachrichten 20, 53 (1959); H. Treder, Gravi-
tative Stoßwellen, Berlin 1962.

19A. Papapetrou and H. Treder, Math. Nachrichten 23, 371 (1961); H. Treder l.c. in
footnote 18.
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a limit, prescribe by themselves that the gµν (up to a coordinate transfor-
mation) must be continuous. It is therefore sufficient to impose piecewise
continuity and piecewise continuous differentiability.

Berlin, Institut für reine Mathematik der Deutschen Akademie der Wis-
senschaften Berlin.
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