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Abstract

Neville’s theorem of the three focus-sharing conics finds a simplification and a new out-
reach in the context of projective geometry.

1 Introduction

In Euclidean geometry, let three points in the plane serve as three pairs of foci for three conics.
The three pairs of conics define three lines through their intersections, and the three lines are
concurrent, they pass a common point [1, 2, 3].

This theorem has found devotees and different proofs in Euclidean geometry [4, 5, 6]. It
may be expanded to non-Euclidean geometries (Fig. 1) where it allows a generalising formula-
tion in projective terms [7].

From the perspective of projective geometry, foci are defined for pairs of conics [8]. They
are the vertices of the quadrilateral of common tangents and come in three pairs, which define

shared foci

diagonal points

quadrangle of Neville points

Figure 1: Three focus-sharing conics in Cayley-Klein geometries.
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quadrangle of common points

absolute conic, eventually

asymptotes, eventually

completing the edges of the quadrangle

The pencil can be seen as determined by the four
common points, or as generated by two conics with
their four intersections. Selecting any of the conics
as absolute conic (strong-line ellipse), the pencil is
determined by any other conic, in particular the sin-
gular conic given by a pair of focal lines.

Figure 2: Pencil of conics through four com-
mon points.

the three diagonals of the quadrilateral [9]. Linear combination of the two conics yields the
pencil of conics tangent to all four sides of the quadrilateral.

For a single conic, it is the metric-generating absolute conic of Cayley-Klein geometries
which may serve as the second conic to define foci in the usual sense. This is the case in the
Neville problem. Confocal conics conventionally form the pencil defined by two foci and the
absolute conic in the background. Pencils exist for each pair of the three focus-sharing conics,
too. It is the consideration of these pencils which admits the short and snappy proofs (see
ch. 9 in [7]).

2 Pairs of conics

To explore the relation between two conics, we consider the generated pencils of conics. Fig-
ure 2 shows the pencil with the four intersection points fixed. It contains three singular elements:
the three pairs of common chords. Figure 3 shows the dual pencil with the four common tan-
gents fixed. It also contains three singular elements: the three pairs of foci. To emphasis their
duality, we call the common chords also focal lines. Whichever focus we choose, it determines
two directrices, which intersect in a diagonal point common to both the quadrilateral of tangents
and the quadrangle of common points (Fig. 4). This diagonal point carries one of the three pairs
of focal lines (i.e. common chords), see Prop. 1 below.

For Neville’s problem, we start with three points (Fig. 5). For any two of them we choose
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The dual pencil can be seen as determined by the
four common tangents, or as generated by two con-
ics with their four common tangents. Selecting any
of the conics as absolute conic (strong-line ellipse),
the pencil is determined by any other conic, in par-
ticular the singular conic given by a pair of foci.
The plane contains points where two conics of the
dual pencil intersect, and points which meet none
of the conics.

Figure 3: Dual pencil of conics with four com-
mon tangents.

a conic for which the two points are a pair of foci with respect to the absolute conic. Any two of
the conics share just one focus with one crossing of directrices and one singular conic consisting
of a pair of common chords. We obtain such a pair of common chords for each of the tree pairs
of conics. The condition that the shared foci are also foci with respect to the absolute conic
imposes linear dependence, and the common chords are the edges of a quadrangle of points in
which the common chords intersect. This turns out to be simple algebra, and yields the desired
proofs.

We use homogeneous coordinates and write “∼” to denote equality up to a nonzero scalar
factor. Conics can be represented by pairs [c,C] of symmetric matrices. They provide a linear
map of points onto lines: Q 7→ cQ, the polar of Q, and its dual, a linear map of lines onto
points, g 7→ Cg, the pole of g. The pair of both maps is also called polarity. The peripheral
points of a conic are the zeros of the quadratic form, PTcP = 0, its tangents are the zeros of
the dual, tTCt = 0.

For regular conics, the two matrices C and c are reciprocal, Cc ∼ 1. Singular conics
satisfy Cc = 0 = cC. If one of c,C has at least rank 2, the other one is (a scalar multiple of)
its adjoint (or transpose cofactor) matrix.

For c of rank 2, we can write c = ghT + hgT. This yields a singular conic consisting
of two distinct lines g, h of peripheral points with a pencil of tangents trough the double point
g × h. For C of rank 2, we can write C = PQT + QPT and find a singular conic consisting
of a (double) line P × Q of peripheral points through the concurrency centers P,Q of the two
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quadrangle of common points

focal lines

diagonal points

diagonals

quadrilateral of common tangents

foci

diagonals

diagonal points

Two conics have 4 common tangents and 4 common points. On the left, part of the pencil with the
common points is shown, with the six chords (focal lines) and the three diagonal points. On the
right, part of the pencil with the common tangents is shown, with the six intersections (foci) and the
three diagonal lines. The diagonal triangles coincide.

Figure 4: Two pencils for a pair of conics with their coinciding diagonal triangles.

pencils of tangents.

For two distinct regular conics [k1,K1], [k2,K2], the pencil P [k1,k2] is given by the linear
combinations {α1k1 + α2k2} (Fig. 2), the dual pencil P̃ [K1,K2] by {β1K1 + β2K2} (Fig. 3).

The pencil is uniquely determined by its four common points, P = P [Q1, . . . , Q4]. Its
singular elements are the pairs of opposite chords, i.e. the pairs of opposite edges of the quad-
rangle Q1, . . . , Q4 of common points intersecting in the diagonal points of the quadrangle. We
note that for regular real conics the singular elements are real even in the case of only complex
intersections of the conics.

Analogously, the dual pencil is uniquely determined by the quadrilateral of common tan-
gents, P̃ = P̃ [t1, . . . , t4]. Its singular elements are the diagonal lines of the quadrilateral with
tangent pencils in the vertices of the quadrilateral. The six intersections of the tangents ti, the
vertices of the quadrilateral, are the common foci of the dual pencil P̃ .

Proposition 1 For any pair of conics, the triangle given by the diagonal points of the quadran-
gle of common points coincides with the triangle given by the diagonal lines of the quadrilateral
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In the case of three ellipses, three of the common chords have no real intersection points, neverthe-
less the chords are real, and the six chords are edges of a quadrangle of intersections. In the case of
three hyperbolas, we have chosen the eccentricities large enough to obtain only real intersections of
the conics and real chords. For clearness, both drawings show an euclidean setting, for the general
setting, see Fig. 1.

Figure 5: Three focus-sharing conics with the quadrangles of Neville centers.

of common tangents. This diagonal triangle is also self-polar: Each diagonal point is the pole
of the opposite diagonal line with respect to all conics of the two pencils.

Proof. See Fig. 4 and Thm. 7.6 of [7]. ./

In other words: given a pair of conics, the diagonals of the tangent quadrilateral meet in
the three intersection points of opposite common chords.

3 Three focus-sharing conics

In Neville’s problem, three conics Kk, k = 1, 2, 3 share three foci Fk, k = 1, 2, 3 with respect
to the absolute conic C. The pair [Fl, Fm] belongs to Kk (k, l,m cyclically), and Fk is focus in
the pairs [Kl,Km], [Kl,C], and [Km,C].

The pair [Kl,Km] itself has six foci (again in three pairs). Fk is one of them, and its adjoint
partner on the diagonal passing Fk will be denoted by F ∗k . The line dk ∼ Fk × F ∗k is a diagonal
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line of the quadrilateral of tangents common to Kl and Km. The opposite diagonal point Dk

can be represented as pole of dk to both of the conics, Dk ∼ Kldk ∼ Kmdk, and the four polars
klFk,kmFk,klF

∗
k ,kmF

∗
k are incident with Dk.

Dk ∼ Kldk ∼ Kmdk ∼ klF
∗
k × kmFk. (1)

The focus Fk has has a directrix (its polar) with both Kl and Km, and the intersection of the
two is the diagonal point Dk (Fig. 5).

We now use the identity of the diagonal triangles, Prop. 1. The diagonal point Dk is
incident with two opposite chords of the pencil P(kl,km). They form one of the singular
elements of this pencil, nk. We can write

nk ∼ (DT
k klDk) km − (DT

k kmDk) kl. (2)

After substituting one Dk by Kldk, the other by Kmdk, we obtain

nk ∼ (dTkKmklKldk) km − (dTkKlkmKmdk) kl ∼ (dTkKmdk) km − (dTkKldk) kl (3)

This is a singular conic consisting of two lines, i.e. a pair of common chords, and a double point,
the diagonal point Dk. For each pair[Kl,Km] of the three conics, we obtain such a singular
conic consisting of that pair of opposite common chords which intersect in the diagonal point
Dk.

Proposition 2 The three singular conics nk are linear dependent. Therefore, the common
chords represented in these singular conics are the six sides of a quadrangle (Fig. 5).

Proof. The conics Km are elements of the dual pencils generated by C and the singular conics
FkF

T
l + FlF

T
k . We fix representatives to remove the ambiguity of arbitrary nonzero scalar

factors and write

Km = ωmC+ λm(FkF
T
l + FlF

T
k ). (4)

Since the diagonal dm is incident with Fm, we obtain

(dTkKmdk) = ωm(d
T
kCdk). (5)

Equation (3) now yields nlm = ωmkm−ωlkl (again choosing a suitable representative to remove
the nonzero coefficient dTkCdk) and linear dependency n12 + n23 + n31 = 0 emerges. ./

Starting with the absolute conic C, we can reformulate Prop.2.
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The figure shows three conics Km outside the ab-
solute conic C in order to get real lines and points.
The points Fm are the shared foci. The points F ∗m
are opposite to the foci Fm in the quadrilateral of
tangents common to Kk and Kl. They are incident
on a line.

Figure 6: Three focus-sharing conics with their
collinear adjoint foci.

Corollary 3 Given a conic with three pairs of tangents defining three intersections. Given one
representative of each dual pencil generated by two of the three pairs of tangents. Then, the
three intersections have two polars each (w.r.t. the conics of the associated dual pencils). These
polars intersect in points which carry two common chords. The six common chords are edges
of a quadrangle.

We turn again to the adjoint foci. A pair [Kl,Km] defines six foci. They yield three
diagonals which define a pairing of the foci, and the [Fk, F

∗
k ] is such a pair. The focus Fk is the

intersection of two tangents common to [Kl,Km], and F ∗k is the intersection of the two other
common tangents. The focus Fk is a focus of the pair [C,Kl] and of the pair [C,Km] as well.
The focus adjoint to Fk in the pair [Kl,Km] is F ∗k , in the pair [C,Kl] it is Fm, and in the pair
[C,Km] it is Fl.

The following proposition was proven by Bogdanov [4] in the Euclidean case. In Cayley-
Klein geometries, it is a generalization of the four-conics theorem known as the dual of the
four-conics-theorem (see Fig. 17 in [10]).

Proposition 4 The three adjoint foci of the three focus-sharing conics are collinear. The six
foci Fk, F ∗k , i = 1 . . . 3, are the vertices of a quadrilateral (Fig. 6).

Proof. We refer again the singular members of dual pencils. The singular elements of the dual
pencil Klm = αKl + βKm are given by the diagonal points itself:

Nk = (dTkKldk)Km − (dTkKmdk)Kl. (6)
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directrix of conic i at focus k

Given three shared foci and three ellipses, one
adds the six directrices first. We choose one of
the two triangles contained in the convex hexagon
(d13, d21, d32) to establish trilinear coordinates ξk.
The distance of foci (2fi) is found in the distance
of the directrices (2κi = 2fi/ε

2
i ), so that intersec-

tions of two ellipses are given by comparing the
distances from the focus (e.g.F1) with the distances
from the directrices (ξ2 and 2κ3 − ξ3 for the com-
mon chord of K2 and K3).

Figure 7: Three focus-sharing ellipses on the
Euclidean plane.

We take (5) and obtain ∑
k∈{1,2,3}

ωk(d
T
l Cdl)(d

T
mCdm)Nk = 0. (7)

The three singular conics (all are pairs FkF ∗k of foci) are linear dependent, i.e. the foci Fk, F ∗k ,
k = 1, 2, 3 are the vertices of a complete quadrilateral, the three adjoint foci F ∗k are collinear.

./

4 The limit of the Neville points

Any point can be found as a Neville point, if it is reached by the three pencils of conics generated
by the three pairs of foci with the absolute conic. In particular, any point in the inner part of the
triangle can be the intersection of three ellipses of the set.

There is one particular point among the Neville centers. It is the limit for collapsing el-
lipses, for the singular members of the three dual pencils P̃ [Km,C]. This limit is given by
ωm → 0 in eq. (4). We start with the Euclidean picture of Neville’s proof (Fig 7). The triangle
of foci is augmented with the six directrices. We identify two triangles of three directrices each.
They are congruent and similar to the triangle of foci. We use distances (ξ1, ξ2, ξ3) to the sides
of one of them (d13, d21, d32). After the calculation, [ξ1 : ξ2 : ξ3] can be reinterpreted as trilinear
coordinates. We denote the eccentricity of the conic Kk by εk, the distances of the foci by 2fk,
and the distance of the directrices by 2κk = 2fk/ε

2
k. The common chords of the three ellipses
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are
ε1ξ1 = ε2(2κ2 − ξ2), ε2ξ2 = ε3(2κ3 − ξ3), ε3ξ3 = ε1(2κ1 − ξ1), (8)

We obtain the intersection

ξS1 = κ1+ε
−1
1 (κ2ε2−κ3ε3), ξS2 = κ2+ε

−1
2 (κ3ε3−κ1ε1), ξS3 = κ3+ε

−1
3 (κ1ε1−κ2ε2). (9)

The limit of collapsing ellipses is simply given by eccentricities equal one. In this case, the
equations (8) for the chords reduce to the equations for the angular bisectors of the directrices.
The common chords become the angular bisectors of the triangle [D1, D2, D3] approaching the
focus triangle, too. The intersection of the chords approaches the incenter for eccentricities
equal one.

We shall show, using the singular elements of pencils of conics, that in the general Cayley-
Klein geometry, the limit of the intersection again approaches the incenter. More specifically,
we shall show that the limit of the common chord of two conics sharing a focus is the angular
bisector. We show the proof for the case of a regular absolute conic.

The shared foci are Fk, Fl of [Km,C], the diagonal pointsDm ∼ kkFm×klFm ∼ Kkdm ∼
Kldm. The focal lines (i.e. the common chords) are the lines of the singular elements nm ∼
(DT

mklDm)kk − (DT
mkkDm)kl. As we are interested in the limit ωm → 0, we fix λm = 1 in (4)

and express the dual conics as

Km = ωmC+ FkF
T
l + FlF

T
k . (10)

Proposition 5 Given the dual conics (10). Then the the singular conics nm, given by (3), of the
pencils P(kk,kl) are formed by the angular bisectors

wm ∼ ((Fm × Fk)TC(Fm × Fk))(Fm × Fl)(Fm × Fl)T

−((Fm × Fl)TC(Fm × Fl))(Fm × Fk)(Fm × Fk)T,
(11)

i.e. nm ∼ wm.

Proof. Step 1: km as inverse of Km with suitable scaling. We normalize Fk such that γk :=

FT
k cFk = ±1 and write pk := cFk, δm := FT

k cFl = FT
k pl = FT

l pk. The coefficient ωm in (10)
is determined now. The limit of eccentricity 1 means ωm → 0 here. The adjoint km to Km is
found as

km = ωmK
−1
m = c+

1

(µ2
m − γkγl)

(γlpkp
T
k + γkplp

T
l )−

µm
(µ2

m − γkγl)
(plp

T
k + pkp

T
l ) (12)

with µm = ωm + δm.
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Step 2: Singular conics nm of common chords. We use (3) and (5) from the proof of Prop. 2
to find

nm ∼ kk − kl. (13)

Step 3: km in the limit of eccentricity 1. We fix

k̃m = (Fk × Fl)(Fk × Fl)T (14)

as representation of the singular conic given by the line through the foci Fk, Fl. Equation (12)
yields

FT
k kmFk =

γk(µm − δm)2

µ2
m − γkγl

, FT
l kmFl the same,

and finally

FT
k kmFl =

(µm − δm)(µmδm − γkγl)
µ2
m − γkγl

.

In the limit ωm → 0, that is µm → δm, these values vanish. Then both Fk and Fl are incident
with the (km)-polars of Fk and Fl. Consequently, the polar of any point on Fk × Fl is this line
itself:

lim
ωm→0

km ∼ k̃m (15)

Step 4: Comparing coefficients. At this point, we only have to check that the coefficients
of kk and kl in (13) fit the coefficients in (11):

lim
ω→0

(kk − kl)
?∼ ((Fm × Fk)TC(Fm × Fk))k̃k − ((Fm × Fl)TC(Fm × Fl))k̃l.

Because of (15), it suffices to check one regular point. We choose Q = C(Fk × Fl) and obtain

QTk̃mQ = ((Fk × Fl)TQ)2, QTkmQ = (Fk × Fl)TQ

Therefore, indeed,

limω→0 kk − kl =
1

(Fm × Fl)TC(Fm × Fl)
k̃k −

1

(Fm × Fk)TC(Fm × Fk)
k̃l

∼ ((Fm × Fk)TC(Fm × Fk))k̃k − ((Fm × Fl)TC(Fm × Fl))k̃l.

The singular conic of the diagonals is the singular conic of the angular bisectors, and the Neville
center coincides with the incenter of the focus triangle. ./
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Each pair of foci generates a quadrilateral of tan-
gents to the absolute conic. There are two other
pairs of intersections, which are connected by the
other two diagonals of the quadrilateral. These six
diagonals are again edges of a quadrangle: It is the
quadrangle of circumcenters of the focus triangle.

Figure 8: The quadrangle of diagonals of the
set of the three pairs of foci.

5 Trifles

In the Euclidean setup, eq. (8), we obtain an incenter for the Neville point also in the case of
equal eccentricities. The incenter is not that of the focus triangle, but of the directrix hexagon.

In the limit of infinite eccentricity, the Neville point approaches the circumcenter of the
focus triangle. This circumcenter is one of the 60 Brianchon points of the tangent hexagon,
which is generated by the three foci. More general: To each pair of foci belong two other pairs
corresponding to the two other diagonals. These six diagonals are again edges of a quadrangle
(Fig. 8).

The trilinear coordinates of the incenter of the triangle [D1, D2, D3] relative to the triangle
[U1, U2, U3] in Fig. 7 are given by

N = [(a+ b− c) : (b+ c− a) : (c+ a− b)]. (16)

This seems to be a particular point [11] in the triangle [U1, U2, U3], but it comes in 32 different
versions: The hexagon of directrices admits eight choices of directrix triangles, and for each
triangle a quadrangle of in- and excenters:

N = [(±a+ sγb− sβc) : (±b+ sαc− sγa) : (±c+ sβa− sαb)] (17)

with sα, sβ, sγ = ±1 and sαsβsγ = 1 for the quadrangle.

Since we calculate in projective spaces, the propositions of section 3 have dual counter-
parts. Instead of foci as intersections of tangents common with a fourth (absolute) conic, we
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Dual to the focus-sharing conics we obtain intersections of common tangents in a quadrilateral and
connections of focal lines and their adjoints as edges of a quadrangle.

Figure 9: Three conics sharing focal lines.

consider the chords through intersections with this fourth (absolute) conic. We also call them
focal lines to emphasis this duality. Three pairs of tangents to the absolute conic generated
three dual pencils from which three conics were taken. Now three pairs of points on the abso-
lute conic generate three pencils from which three conics can be taken. Each pair of the three
conics had four intersections and three pairs of chords. Now each pair of three conics has four
common tangents and three pairs of foci. In each pair of conics, one pair of chords intersected
in the intersection of the polars of the shared focus. Now in each pair of conics, one pair of foci
is collinear with the poles of the shared focal lines. The three chosen pairs of chords were the
edges of a quadrangle. Now the three chosen pairs of foci are the vertices of a quadrilateral.
This is the dual version of Prop. 2 (Fig. 9, left).

Each pair of three conics sharing a focal line defines an adjoint line (the partner in the pair
to which the shared focal line belongs). Together with the shared focal lines we obtain six lines
which are found to be the edges of a complete quadrangle. This is the dual version of Prop. 4
(Fig. 9, right), known in Euclidean notions as the four-conics theorem [10].

We conclude with a general remark on the relation between Euclidean and non-Euclidean
constructions. Theorems about conics and lines only, without explicit reference to symmetry
and perpendiculars, can be interpreted as theorems in non-Euclidean geometry. Figure 6 is an
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Three circles (in the upper part non-Euclidean, at
left Euclidean) define three quadrilaterals of com-
mon tangents (differing in line style and point
style). Choosing a vertex from two of these, some
vertex of the third will be collinear with the two.
The non-Euclidean view-point shows the connec-
tion of otherwise isolated theorems.

Figure 10: Collinearity between quadrilaterals of common tangents.

example. One may state that if two common tangents of each pair of three conics touch a fourth
conic, then the remaining common tangents of each pair intersect in three collinear points [10].
This formulation is purely Euclidean, but misses the non-Euclidean connection. In addition,
Euclidean theorems about lines and circles should be expected to find an simple non-Euclidean
extension by use of the non-Euclidean definition of circles and perpendicularity. Figure 10
shows the connection between Monge’s theorem, a dual three-conic theorem cited in [10, 12],
and a Pascal-line construction cited in [6].
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