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Abstract

Foci are defined for a pair of conics. They are the six vertices of the quadri-
lateral of common tangents. To be circle is a derived property of a pair of conics,
too.

1 Introduction

The beloved properties of conics, which we start to discover at school, man-
ifest themselves as projective relations between two conics, as soon as
we use the embedding in the non-Euclidean Cayley-Klein geometries. Non-
Euclidean geometry enables us to find real constructions of objects which
otherwise lie in infinity or are imaginary.

Our school-level understanding of geometry is a play with ruler and com-
pass on the Euclidean plane. Conics constitute the last topic to be tackled in
this manner and the first that leads beyond its limits. The most prominent
property of conics is the existence of foci.

In non-Euclidean geometry, the scale on the drawing plane is not con-
stant. So, how can we define motions and determine congruency? We start
by generating the group of motions by defining reflections [1|. Reflections
define perpendiculars, and in Cayley-Klein geometries, a conic provides the
reflections simply by requiring its own invariance [1]. Reflection of tangents
to this absolute conic yield other tangents again, and the reflection of a point
is the intersection of the reflection of its two tangents to the absolute conic.
Two lines are perpendicular if one is reflected by the other onto itself. Such
lines contain the others pole. The pole becomes the common intersection of
all perpendiculars of its polar.

Geometries can now be classified by their absolute conics. In Euclidean
geometry, this conic is a double line at infinity with complex fixed points,
S0 it is not prominent. The line at infinity contains the poles of all lines
and is the polar of all points. In Minkowski geometry, the fixed points are
real, and become prominent in their role as directions of the world lines of
light signals [2]. In Galilei geometry, these two fixed points coincide [5]. The
Beltrami-Klein model of the hyperbolic plane uses a regular conic. To adapt
to our Euclidean habits, it has the form of a circle. As we shall see, a conic
acquires the properties of a circle when declared absolute.



2 Foci as properties of pairs of conics

The focus of a conic is characterized by a particular property of its pencil
of rays: The pole (with respect to the conic considered) of any line through
the focus lies on the perpendicular to the line in the focus. In other words,
the poles of a focal ray with respect to the two conics (the considered and
the absolute) are collinear with the focus. This statement does not refer to
the task of the absolute conic to define perpendicularity. It solely uses the
pole-polar relation of two conics.

Foci thus become properties of pairs of conics instead of a single conic
and the metric. Let us consider a tangent from the focus to one of the
conics, so that its pole is the contact point. The pole by the other conic
can be collinear with this contact point and the focus only when it lies on
the tangent, too. That is, the line is tangent to both conics. A focus must
be an intersection of tangents common to the conics, whether real or not.
Consequently, the intersections of the common tangents are the foci (Fig. 1,
left).

The foci of a pair of conics are the vertices of the quadrilateral of common
tangents. A pair of conics has six foci, more precisely three pairs of opposite
foci. Fig. 1, right, shows a pencil of confocal conics when all four common
tangents are real lines. The diagonal lines of the tangent quadrilateral form
a self-polar triangle: Its vertices and edges are pole-polar pairs (to all conics
of the pencil). Its vertices are also the diagonal points of the quadrangle of
intersections of any two conics of the pencil. Thus, the diagonal triangle is
self-dual, too [3].

The consideration of metric properties of foci requires the promotion
of one conic of the pencil as absolute, i.e. as generating the metric. For
any other conic of the pencil and any focus, we obtain the three familiar
properties:

(1) All poles of a line through a focus are collinear with the focus. The line
connecting the focus with the poles of the reference line is perpendicular to
the latter, independent of which conic of the pencil is taken as absolute.

(2) The lines through a focus are reflected in the tangents of any conic of
the pencil onto lines though the opposite focus, independent of which conic
of the pencil is taken as absolute.

(3) Yet more, the focus itself is reflected in the tangents of a chosen conic of
the pencil onto the points of a circle around the opposite focus, independent
of which conic of the pencil is taken as absolute. (This adds the gardener’s
rule to outline an ellipse using a rope attached to two pegs in the foci of the
ellipse.)
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Left: Given a set of conics with two common tangents. The poles of any line
passing the vertex of the tangents are concurrent with this vertex. Right: Two
conics define four common tangents and generate a pencil of conics. Any two
conics of the pencil have the same quadrilateral of common tangents with the same
six vertices and three diagonals (dashed lines). The vertices are foci by this pole-
collinearity property. If any conic of the pencil is declared absolute, the foci obtain
the familiar metric properties of a focus, too.

Figure 1: Confocal conics for real common tangents

3 Being circle as a relation between conics

Circles are usually understood by metric considerations, in particular the
constant distance from some center. In non-Euclidean geometry, we refer
to simpler projective properties. When symmetry is defined by an absolute
conic, a circle should be symmetric with respect to all reflection on the lines
through some center, i.e. the diameters. The tangents in the intersection of
a diameter with the circle should be perpendicular to the diameter, i.e. the
pole of a diameter with respect to the circle coincides with its pole relative
to the absolute conic.

Again, we argue with the diameters tangent to the circle. The pole of
such a diameter with respect to the circle is the point of contact.

When the poles with respect to the circle and to the absolute conic have
to coincide, the point of contact with the circle is equally the point of contact
with the absolute conic. A conic is a circle if it touches the absolute conic
twice. The center of the circle is the intersection of the two tangents in the
points of contact.
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Left: When two pairs of foci coincide, the other pair becomes a pair of contact
points common to all conics of the pencil. Its connection is the polar of the center
(formed by the collision of the two pairs) with respect to all conics of the pencil.
Right: The poles of a line passing the center coincide. We found the pencil of
concentric circles.

Figure 2: Concentric circles for real common tangents and contact points

A set of concentric circles has a common center and a common pair of
points of contact. This is the reason why any of the circles of the pencil
can play the role of the absolute conic without any change in the pencil.
The defining structure is a pair of tangents with a pair of contact points
(Fig. 2). It is a quadrilateral formed by the two tangents and the double line
connecting the contact points. Any two conics that show such a structure
are circle with respect to each other. Two conics become circles to each other
if two pairs of their foci collide and thus become the (common) midpoint of
the circles. The third pair becomes the pair of contact points. In short: Two
conics are circles to each other if they touch twice.

4 Confocal conics

This is an example to demonstrate the scope of projective phrasing. In Eu-
clidean formulation, it is observed for two confocal ellipses that the tangents
of the inner one intersect the outer ellipse in two points. When the tangent is
reflected at the intersection point by the outer ellipse, it becomes the second
tangent to the inner ellipse from this point. The projective phrasing shows



without toil that a hyperbola confocal to the ellipse yields the same, and
that the unreflected absolute conic of the Euclidean plane can be replaced
by any other conic confocal with the two just considered.

Given two conics, K and L, they define their foci as vertices of the quadri-
lateral of common tangents. A third conic C is confocal to this pair, if it
belongs to the pencil kIC + AL, i.e. if it is tangent to the common quadrilat-
eral.

Proposition: Given the conic C which determines perpendicularity. Any
tangent t1 to K is reflected at the intersection with a confocal with X and
C conic L by the tangent to £ into a tangent to to K. Proof: Any point
@ ¢ K determines two tangents ¢; 2 to K, whether real or not. Some conic
C is chosen to determine perpendicularity. If the numbers a2 = (t1,2,Ct12)
have the same sign, we obtain the angular bisectors of the tangents ¢; 2 at

Q as
W+ X /oo t1 = /g ta

Both bisectors are tangents to conics confocal to the pair {K,C}, in particular
Ly = (ws,Cwi)K — (wa, Kw)C.

The contact points Liw4 of the bisectors conicide with their intersection
because expansion yields

<t1,2, Eiwi> =0.

We obtained for the point Q two conics L4 which provide the required
reflection of t; in t5. O

The two conics are determined by the quadrilateral of tangents of the pair
{K,C}. In addition, because the two conics L4 confocal to {C,C} do not
change when another conic of the pencil is chosen as absolute, the angular
bisectors are independent of such a choice.

We conclude: In a pencil of confocal conics, a tangent to a conic K of
the pencil from a point () on any other conic of the pencil is reflected into
the second tangent from @ to K at the tangents of the (two) conics of the
pencil in @, independent of which (third) conic of the pencil is promoted to
serve as the metric-determining.

5 Summary

The definition of foci in non-Euclidean (precisely metric-projective) geome-
tries reveals a structure basically independent of the particular explicit met-
ric properties. The structure can be understood as a pure relation between
conics.
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In a pencil of confocal conics, the tan-
gents from any point ) to any conic
IC are reflected into each other by both
conics L4 of the pencil that pass this
point. At the intersection points of two
conics L4 of the pencil, the two tan-
gents to L4 are perpendicular if the ab-
solute conic is anyone of the pencil, too.

Figure 3: Tangents of confocal conics

(1) The quadrilateral of tangents common to two conics defines six points,
which reveal the familiar properties of foci. The two poles of a line through
a focus are collinear with the focus.

(2) The four lines of a quadrilateral define a pencil of conics touching the
four lines. The intersection point of the four lines are the foci for any pair
of conics of this pencil. For any line through a focus, the poles with respect
to all the conics of the pencil are collinear.

(3) The diagonal lines of the quadrilateral form a self-polar triangle:
Its vertices and edges are pole-polar pairs (to all conics of the pencil). Its
vertices are also the diagonal points of the quadrangle of intersections of any
two conics of the pencil. Thus, the diagonal triangle is self-dual, too.

(4) Independent of which conic of the pencil is taken as absolute, the
three cited characteristics of foci are present.
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